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ABSTRACT 

The paper  is devoted to the existence and stability of travelling waves 

described by monotone parabolic systems in the monostable case. The 

first init ial-boundary value problem is considered. Existence of waves is 

proved for all values of the velocity greater than  or equal to the minimal 

velocity. A minimax representation for the minimal velocity is obtained. 

Stability of monotone waves in a weighted norm is proved. 

1. I n t r o d u c t i o n  

We consider the parabol ic  sys tem of equat ions 

Ou , ~ , au , 
(1.1) -~ = a(x )Au + ~.,bi(x )-~xj + F(u,x ), 

j=l 

in a cyl inder  ~ --- gt' x R. Here u(x) -- (u i (x) ,  . . . ,un(x)) ,  x -- (Xl, ...,Xm), Xl is 

the  var iable  along the  axis of the  cylinder, x '  = (x2, ..., xm) is the  var iable  in the  
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section ~ '  of the cylinder, the domain ~'  is bounded and has a boundary of the 

class C 2+~ with some positive 5, a(x') ,  bj(x') are smooth diagonal matrices, 

ai(x')_>ao>O, x ' C l 2 ' ,  i = l , . . . , n ,  j = l , . . . , m ,  

where ai are diagonal elements of the matrix a, F = (F1,...,Fn) is a smooth 

vector-valued function. On the boundary Oft of the cylinder we consider the 

boundary conditions 

(1.2) u(x) = r x e 0ft, 

where r  E C 2+~ (~) depends only on the variable in the section of the cylinder. 

The travelling wave solution of the problem (1.1), (1.2) is a solution of the 

form 

u ( x ,  t )  = ~ ( ~ 1  - a ,  ~2, ..., ~m) ,  

where c is an unknown constant, the wave velocity. This function is a solution 

of the problem 

(1.3) 
m 

OW E bj , Ow a(x')Aw + C~xl + (X )~xj + F(w,x ) --- O, 
j = l  

! 

w(x) = r  ), �9 c 0 a .  

We assume that  for n > 1 the nonlinearity F satisfies the following condition: 

OF~ 
- - > 0 ,  i ~ j ,  i , j = l , . . . , n .  
Ouj 

This condition means that  we can use comparison theorems for the systems under 

consideration. For n = 1 there are no additional conditions and the comparison 

theorems are also applicable. The systems of this type arise in numerous appli- 

cations (see [15]). 

We look for the travelling waves having limits at infinity: 

(1.4) lim w(x) = w+(x'), 
xl--+• 

where the functions w+ are solutions of the problem in the section of the cylinder: 

, , ~ , O w •  
(1.5) a(x )A w• + ~..~bi(x )-~xj + F(w+,x') = O, 

j = 2  

(1.6) w• ) r  ), z '  ' = ' E Oft', 
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where A' is the Laplace operator with respect to the variables in the section of 

the cylinder. 

We recall the classification of the problems according to stability of solutions 

w+ and w_. We consider the eigenvalue problem for the corresponding linearized 

equation 

(1.r) 
i / m t (~U / s t 
)A u + Zbj(  + F  = 

j = 2  

(1.8) u = 0 ,  x' E 0 ~ ' .  

If all eigenvalues of both operators L + and L -  are in the left half-plane, then it 

is the so-called bistable case. If for one of them there are eigenvalues in the right 

half-plane and for another one all eigenvalues have negative real parts, it is the 

monostable case. Finally, in the unstable case both operators have eigenvalues 

in the right half-plane. As is well known (see [15]) properties of travelling waves 

are different in these three cases. 

In this work we study the monostable case. We suppose that all eigenvalues of 

the operator L -  have negative real parts, and there are eigenvalues of the operator 

L + with positive real parts. For the one-dimensional scalar equation (m -- n = 1) 

this problem was first studied in [7] and then followed by a large number of other 

works (see [15] for the references). For the multidimensional scalar equation the 

problem was considered in [2] [4], [6], [14] and for one-dimensional systems of 

equations in [15], [17]. In this work we consider multidimensional systems of 

equations and develop the methods and results suggested in our previous works 

for one-dimensional systems. 

Proof  of the existence of travelling waves is based on the comparison theorems 

which are valid for the systems under consideration. We first prove existence of 

solutions of some auxiliary problems in half-cylinders and then, passing to the 

limt, we obtain existence of solutions in the whole cylinder. 

Stability of travellig waves with respect to small perturbations is based on the 

analysis of the spectrum of the linearized operator which can have independent 

interest. Consider the linear operator 

m Ou 
Lu = a(x)Au + ~-'~ bj(x)-fi-~. + c(x)u 

j = l  " ' 3  

assuming that  the matrices a, bj, c are sufficiently smooth, a and bj are diagonal, c 

has nonnegative off-diagonal elements and is functionally irreducible. We consider 

this operator on functions u E C 2+~ (~t) satisfying the boundary condition u = 0 
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on t9~. Denote ae the supremum of the real parts of the points of the essential 

spectrum of this operator, and ad of its discrete spectrum. In [18] we showed 

that  if cr d > ere, then the principal eigenvalue of the operator is real, simple, and 

the corresponding eigenfunction is positive. Since the derivative of the monotone 

in xl wave is an eigenfunction corresponding to zero eigenvalue, then it allows us 

to conclude that  all other eigenvalues are in the left half-plane and to prove the 

stability of the monotone wave. 

However, we can make this conclusion only in the case if the essential spectrum 

lies in the left half-plane, i.e. ae < Od. This inequality holds in the bistable case, 

but not in the monostable case considered in this work. In the monostable case 

ae ~> ad, and to move the essential spectrum to the left half-plane we introduce 

a weighted norm. If the derivative of the wave belongs to this weighted space, 

we can still use the result above. So the question is what happens if it does not 

belong to this space. In other words, we have a positive solution v of the equation 

Lu = 0 which should be understood as a local equality because the function v 

may not belong to C 2+~ (~1) and may even be unbounded. We show that  in this 

case all eigenvalues of the operator lie in the left half-plane. It  is a generalization 

of the results obtained in our previous work [17] for one-dimensional systems. 

The contents of the paper  are as follows. In Section 2 we prove existence of 

waves for all values of velocities greater than or equal to the minimal velocity 

co. We obtain a miminax representation for the minimal velocity and show that  

there are no waves with velocity less than co. In Section 3 we prove stability of 

waves in a weighted norm. 

2. E x i s t e n c e  o f  w a v e s  

2.1 MAIN THEOREM. We make the following assumptions on the solutions w+ 

and w_ of the problem (1.5), (1.6). 

Assumption 1: 

inequality 

(2.1) 

holds. 

Assumption 2: 

the inequality 

The functions w+ belong to C(2+~)(~ ')  and the following 

m ( =  ) < = - ( =  ), = e 

There are no other solutions of the problem (1.5), (1.6) satisfying 

! I 

(2.2) w+(x ) < w < w_(x'), x C fl'. 
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Assumption 3: There exists a sequence of functions {vn (x')} uniformly bounded 

in C (2+6) (ft') satisfying the inequality (2.2) and the following conditions: 

v~(x') -~ ~+(x')  as ~ -+ (2.3) 

uniformly in x ' ,  

(2.4) a(x')A'vn + ) : b j ( x ' ) ~  + F(v~, x') >_ O, 
j=2 J 
t t r t 

(2.5) v~(~ ) = r ), x e 0 n .  

The last assumption can be formulated in terms of eigenvalues of the linearized 

problem. We discuss it below. 

We prove first the theorem on wave existence under Assumptions 1-3. We will 

show below that  Assumption 2 is not always necessary and can be replaced by a 

weaker assumption. 

THEOREM 2.1: Let Assumptions 1-3 be satisfied. Then there exists a constant 

co such that for every c >_ Co there exists a monotone in xl  solution of the problem 

The constant co is given by the minimax representation 

CO = inf sup Bi, 
pEK xC~, i=l,...,n 

(1.3), (1.4). 

(2.6) 

where 

(2.7) Bi = ai(x )Api + L oij(x )-~xj + Fi(p,x ) - Oxl ] '  
j=l 

bij are diagonal elements of the matrix bj, K is a class of sut~ciently smooth 
vector-valued functions p(x) such that 

(2.8) lira p(x) = w• p(x) = r forx  E OFt, 
Xl--~• 

the derivative O p / Ox 1 is negative and the normal derivative O( p -  w + ( x ) ) / Ou, x e 

OFt in the direction of the outer normal is also negative. 

For c < Co such soIutions do not exist. 

Remark: We show below that  there exists a function p(x) such that  Bi is 

bounded and that  the minimal value of the velocity given by (2.6) is finite. 

Proof: We take c > Co. Then there exists a function p for which supx,i Bi < c. 

It means that  

(2.9) a(x' )Ap + COp m 2p  , ~ + ~ b j ( ~ ' )  §  < 0  
1 
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for all x E 12. For any given N we can choose a function vk(x') which satisfies 

Assumption 3 and such that 

(2.10) w+(x') < vk(x') < p(x) I~,=N �9 

Indeed, since p -+ w+ as xl -+ cx) and the derivative Op/OXl is negative, then for 

all internal points x' we have the inequality 

(2.11) w+(~') < p(x) I ~ , = N  - 

On the other hand, vk --+ w+ as k --+ oc. Then for k sufficiently large the 

inequality (2.10) holds in any closed domain ~0 C 

From the convergence (2.3) and the uniform boundedness of the second deriva- 

tives of the functions vk there follows the convergence of the first derivatives: 

Ovk Ow+ 
(2.12) cOxi cOxi +0, i = l , . . . , m  

uniformly in x'.  Since the derivative O(p - w+(x'))/Ou, xl = N is negative, we 

obtain the inequality (2.10) for all x' ~ '  E and sufficiently large k. 

We introduce a domain ~'~N C ~ located in the half-space {Xl < N} and such 

that  g t N =  Ft for xl <_ N - 1, and the boundary O~g belongs to C (z+~). We 

consider now the initial-boundary value problem for the equation 

( m ,0H ) 

in the domain ~-~N with the initial condition 

(2.14) ~(z, 0) = vk(~'), 

and the boundary conditions 

(2.15) ~(x,t) Io~N= vk(x'). 

Here 
m 

f(x ')  = a(x')A'vk + E bj(x')~Vkj + F(vk, x'). 
j~-2 

To show existence of the classical solution of this problem, we construct a 

sequence of bounded domains 12~v , i = 1, 2, ... with sufficiently smooth boundary 

and such that  
o o  

i =1  
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and consider equation (2.13) with initial condition (2.14) in the domain ~ v  with 

the boundary condition 

(2.16) ~(x,t) Io~-- vk(z'). 

We note that the compatibility condition for the problem (2.13), (2.14), (2.16) is 

satisfied. So the classical solution exists (see [8]). 

We show that the solution of the problem (2.13), (2.14), (2.16) satisfies the 
inequality 

Indeed, the function 

satisfies the equation 

Oz 
Ot 

u(x,t) < p(x). 

z(x,t) = u(x,t) - p ( x )  

Oz "~ , Oz , , , "~ --Az+a -l(x') r +Ebj(x )~+F(u'x )-F(p'x )-f(x )e - t-g ] 
j = l  

where 

( s ) g ( x ) = -  a (x ' )Ap+c  + bj(x') . +F(p,x ' )  > 0 .  
j = l  

Since z(x,O) < O, z(x,t) Io~ <_ O, f(x ')  and g(x) are nonnegative, then z(x,t) 
< 0 for all t _> 0 and x E fray. 

We note that the solution of the problem (2.13), (2.14), (2.16) increases in 
time. Indeed, the function v = Ou/Ot satisfies the problem 

O~----Av+a-'  c--~x 1+ - - +  ( u , x ) v + f e  -t  
k=l 

vlt=0 = 0 ,  v l o a ~ = 0 .  

Then v(x,t) > 0 and u(x,t) > vk(x'). 
So the solution Uig(X, t) of the problem (2.13), (2.14), (2.16) is bounded inde- 

pendently of i in C and, consequently, in the C(2+~ Choosing a converging 

subsequence, we obtain a classical solution uiv(x, t) of the problem (2.13)-(2.15). 
As before we show that 

r ! 
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and UN(X , t) is increasing in t. Passing to the limit as t --+ co, we obtain a solution 

WN(X) of the equation (1.3) in the domain f~N with the boundary condition 

~ N  Ion~o~N--- r 

It  is bounded in the C(2+~)-norm independently of N. Moreover 

t 

w+(x ) < wN(x) _ p(x). 

We note also tha t  OwN/OXl <_ O. Indeed, the function z -- OUN/OXl satisfies the 

problem 

i)z Az + a -1 (c Oz n Oz F' ' ) 
~ = \ Oxl + Z (u,x )z , 

z}on = O, zl~=o = O, 

and zion N < 0 since UN(X,t) >_ v(x'). Then z < 0. 

Since the function wg(x) is monotone in Xl, then there exists the limit 

p 

WN(X ) = lim WN(X). 
Xl.--~--O0 

It  satisfies the problem (1.5), (1.6) and the inequality 

vk(x') <_ w~(x') < w_(z'). 

Then w~ = w_. 

Thus we have constructed the sequence of functions {WN}, N = 1, 2 , . . .  defined 

for xl  _< N.  We show now how to construct the solution in the whole cylinder ~2. 

We choose an arbi trary interior point in fL Without  loss of generality we can 

assume tha t  it is x = 0. Denote XN = (XlN, 0n- l ) ,  where 0 n-1 is a ( n -  1)-vector 

with zero elements, XlN is a solution of the equation 

~d3NI(Xl,0 n - l )  = pl(O, On-1) .  

Here the index 1 shows the number of the component of the vector-valued func- 

tion. Existence and uniqueness of the solution follow from the monotonicity of the 

function wg in x l. Denote further uTn (x) = wN (x + XN) so that  W-N 1 (0) = Pl (0). 

Since WNI(O) <_ pl(O), then xN <_ 0 and the functions w-N are defined at  least 

for Xl _< N.  Since the derivatives of these functions are uniformly bounded, then 

for any given M from the sequence {W-N} we can choose a subsequence converging 

to some limiting function uniformly on the set gt N { [ - M ,  M]}. If we consider 
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now a sequence of M going to infinity and choosing each t ime a converging 

subsequence, we obtain the limiting function w(x) defined in the whole t~. It  is a 

solution of equation (1.3) as a limit of solutions of this equation, and it satisfies 

the boundary conditions (1.2). The function w(x) has a nonnegative derivative 

with respect to xl .  Hence there exist the limits of w(x) as xl --+ =t=co. We have 

W+I(0 ) < WNI(0) ---- pl(0) < W-l (0  ). 

Since the limits l imxl_~• satisfy the problem (1.5), (1.6), then we 

necessarily obtain (1.4). 

We have already mentioned that  the derivative cOw/Oxl is not positive. We 

show now that  it is strictly negative assuming that  the matrix OFi/Owj is func- 

tionally irreducible. Indeed, the function y = cOw/Oxl is a solution of the problem 

, Oyi C----,. , '. Oy~ @ OF~(w(x))) 
a(x )Ay +  -SEx  +  :IL + owj = o, 

y]oa = 0, 

and y > 0. By the positivity theorems Yk > 0 in ~ or Yk ~ O. The latter cannot 

take place because w(x) has different values at Xl = +co. 

Thus the theorem is proved for c > Co. 

To show existence of a travelling wave for c = Co we consider a sequence 

{cn}, cn > Co, converging to Co. From the corresponding sequence of waves 

{w (~)} with the velocities c,~ we can choose a subsequence converging to some 

limiting function w0. It  satisfies equation (1.3) with c = Co and the boundary 

conditions. 

Consider finally the case c < Co. Suppose that  there is a solution w(x) of the 

problem (1.3), (1.4) monotone in xl .  By virtue of the maximum principle the 

normal derivative O(w- w+)/On on the boundary of the cylinder is negative, and 

w C K.  Then 

co > inf sup Bi. 
pEK x,i 

This contradiction proves the theorem. | 

We note that  Assumption 3 means that  the principal eigenvalue of the operator 

L + given by (1.7), (1.8) is nonnegative. If we suppose that  it is positive, then we 

can put 
t p t 

) = ) + ), 

where T~ > 0 and T,~ --+ 0 as n --+ co; u0 is an eigenfunction corresponding to the 

principal eigenvalue. Since uo(x ) > 0, x'  ' E ~ ' ,  then the functions vn defined in 

this way satisfy Assumption 3. 
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2.2 EXAMPLE OF A TEST FUNCTION. We present  here an example  of a test  

funct ion for which the expressions Bi given by (2.7) are bounded.  I t  will show 

t h a t  the  min imal  velocity is bounded  and the waves exist. 

We pu t  

p(~) = ~+(~') + r  - ~ + ( x ' ) ) ,  

where  r  < 0, r  = 1, r  = 0. Then  

t !  

- B i  = al(x Jr bli(X') 

r x') - F~(w_, x')] + F~(w+ + r - w+), z') - F~(w+, z') 
(2.17) + r  - w + ) i  

We can choose the  funct ion r  such tha t  r  is bounded  for all x, r 1 6 2  

is bounded  a t  +c~  and (1 - r 1 6 2  at  - c ~ .  This  means  t ha t  it approaches  

exponent ia l ly  its l imits at  infinity. We show tha t  the third s u m m a n d  in the right 

hand  side of (2.17) remains  bounded.  

We note  first t ha t  the  expression ( w _ - w + ) j ( w _ - w + ) j  is bounded  for x '  E ~ ' .  

Indeed,  in the  interior points  of ft '  it follows f rom the inequali ty w_ > w+. On 

the  b o u n d a r y  
Ow _ Ow+ 

O~ O~ " 

As x '  --+ 0f~, the  numera to r  of the last t e rm in (2.17) has the form 

r  - ~ _ ) ) ~  + ( ~ ( x ) r  - ~+))~, 

where 

/01  /01 B(x)  = ( w + + t ( w _ - w + ) , x  )dt, [~(x) = F ( w + T t r  )dr. 

W h e n  x l  -+ +ec ,  we represent  it in the form 

e l F , ( m ,  x') - F~(~_, x')] + r - ~_))~. 

Finally, as x l  --+ - c ~ ,  we can consider it in the form 

(1 - r  + Fi(w_,x')] + (1 - r  - w_))~, 

where  

[~(x) = F'(w+ + r  - w+) + t(1 - r  - w_))dt. 

In  all th ree  cases, divided by r  (w_ - w + ) ,  it remains  bounded.  
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Thus we have shown that  Co in the theorem is bounded from above, and the 

waves exist. Its boundedness from below follows from Theorem 2.2 (see also 

(2.19)). 

2.3 SICN OF VELOCITY.  We show that  if the principal eigenvalue of the operator 

L + is positive, then the wave velocity is positive. 

Consider the operator 

m 

A(v) = a(x ' )A 'v  + Ebk(x')-~-7~. + F(v ,x ' )  
k = 2  

acting on the functions from C(2+~)(~ ') with the boundary condition 

Let 

where 

Then 

where 

i t i i 

v ( ~ ) = r  x � 9  

i i ! 

v(x ) = ~+(x ) + u(x ), 

u ( z ' ) > 0 ,  z c , u ( z )  O, x EO~t 

A(v) = L+u + B(x')u,  

B(x ' )  = Fv(w + + tu, x )dt - Fv(w+, x ). 

Denote A0 the principal eigenvalue of the operator L + and u* (x') the corres- 
ponding eigenfunction of the adjoint operator L +*. Then 

' I o  , , 
J -  (u*,A(v))dx = Ao (u ,u)dx + (u*,B(x )u)dx . 

p ! p 

By assumption, A0 is positive. The eigenfunction u* is positive in ~'  if 

F '  (w+ (x'), x') is functionally irreducible. If we assume that  the derivative F~ 

satisfies the Lipschitz condition, then for any function u positive in ~t' and suffi- 

ciently small in C-norm, J > 0. 

Equation (1.3) can be represented in the form 

02w Ow 
a-5~ + (c + bl)-~i~ + A(~) = O. 

Denote 
/ 

z(x)  = w(x)  - w+(~ ). 
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Then 
02z 

ah-:-y~2 + (c + 51) + A(w) = O. 
cox 1 

Multiplying this equation by u* and integrating over f~', we obtain 

L ,  (u  * 02z'~ , , , 

Since w(x) --+ w+(x') as Xl -+ +oo uniformly in x', then there exists x ~ such that 

the last integral in the left hand side of this equality is positive for all Xl _ x ~ 

Let x] > X~ . We integrate the last equality from x ~ to x]: 

s  ( . az'  ( .  az'  , 
~u ,a-~xl ) ~]dx' - s  ~ u ,a~xl  ) ~odx + s  bl)z)l~Idx 

(2.18) - (u*, (c + b,)z)l,odx + (u*, A(w))dx = O. 
, 0 , 

We note that  the second derivative O2z/Ox 2 is bounded. Since z(x) --4 0 as 
xl --4 +0% then the first integral in the left hand side of (2.18) tends to zero, 

and the last integral increases and tends to a finite limit. Passing to the limit in 

(2.18) as xl ~ +0% we obtain 

(2.19) fn,(u*,(C+bl)Z) ~odx'= - ~ ,  ~u f *,a-~xl)l~odxOz'~} , 

/?/o + (u*, A(w))dx .  
o , 

The right hand side of the last equality is positive. Then c + bl(x') ~ 0 and, if 

c + bl (x') ~ 0, then c + bl (x') > 0. 
We have proved the following theorem. 

T H E O R E M  2 . 2 :  Suppose that the principal eigenvalue of the operator L + is pos- 
itive. Then for any wave monotone in Xl, c + bl(X') ~ 0 and, if c + bl(X') 7 s 0 for 

all x' E f~', then e + bl (x') > O. If  bl - O, then c is positive. 

C O R O L L A R Y  1:  Let Co (bx) denote the value of the minimal velocity as a functional 
determined by the coefficient bl ( x'). If 

co (0) _> max bl(X') - rn~n bl (x'), 

then 
CO(bl) + bx(x') > 0. 
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COROLLARY 2: Suppose  that  bl - 0 and the principal eigenvalues o f  both 

operators L + and L -  are positive. Then monotone  waves do not  exist. 

Proo[: If a monotone wave existed, we could repeat the same construction for 

Xl -+ - e c  and obtain c < 0. 

Remarks:  (1) The last assertion shows that  monotone waves do not exist in the 

unstable case. The sign of the wave velocity is determined by local properties of 

the operators in small neighbourhoods of w+ and w_. So this results remains 

valid for wider classes of equations than we consider in this work (cf. [15], [17]). 

(2) In the case bl ~ 0, Theorem 2.1 remains valid if instead of Assumption 

2 we require that  there is a finite number of solutions of the problem (1.5), 

(1.6) satisfying (2.2) and, for all of them except w_, the corresponding linearized 

operators have eigenvalues in the right half-plane. 

3. S t a b i l i t y  o f  waves  

3.1 SPECTRUM AND STABILITY. We begin with some general results on stability 

of s tat ionary solutions in Banach spaces. Their proofs are given in [15], [16]. In 

the next subsection we use them to prove stability of travelling waves. 

We consider the equation 

(3.1) du = A u  + f ( u )  
dt 

in a Banach space E. Here u(t) E E for a l l t  E [0, oc), A is a l i nea r  and f a 

nonlinear operator,  acting in E. 

Let the stat ionary equation 

(3.2) Au  + f ( u )  = 0 

have a family of solutions u -- r E E. Here a is a real parameter,  c~ E (--(~, (~). 

We present the results on the stability of the stationary solutions with respect to 

small perturbat ions in an arbi trary Banach space H C E.  

Let the following conditions on r f ( u ) ,  and A be satisfied: 

Assumpt ion  1: (a) There exists the derivative Ca of the stat ionary solution with 

respect to c~, c~ E (--(~, (~), taken in the norm of the space H, r E H (it is not 

assumed here that  r E H).  

(b) r satisfies the Lipchitz condition in (~, c~ E (--(~, ~) in the norm of the 

space H.  
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Assumption 2: (a) Nonlinear operator f (u )  is defined on the whole E, is 

bounded and has the first Gs differential f '  (u) in an arbitrary direction 

v in the space E, u, v, f '  (u)v E E. 

(b) The Gs differential f '  (u)v is continuous in u E E for any fixed v E E. 

(c) The operator f ' ( r  is bounded in H for v E H, a E ( - ~ , ~ )  and 

satisfies the Lipschitz condition in v for [[vll _< 1. Here [[. ][ is the norm in H.  

Assumption 3: (a) There is a restriction of the operator A, acting in H,  which 

is a generator of an analytical semi-group. 

(b) The spectrum a(L) of the operator L = A + f ' ( r  is as follows: zero is a 

simple eigenvalue; all other points of the spectrum lie in a closed angle situated 

in the left half of the complex plane. This means that there are positive numbers 

al and bl such that 

(3.3) Re A + al [ Im A ] +bl _~ 0 

for A E a(L),  A r 0. 

THEOREM 3.1: Let Assumptions 1-3 be satisfied. Then there is a positive e 

such that for any fz E E satisfying the condition [ ~2 - r _< e, the solution u(t) 

of equation (3.1) with initial condition u(O) = ~ exists in the space E for any 

t E [0, c~). This solution is unique, and for some a E ( - 6 ,  ~) the estimation 

I lu( t )  - Cal l  _< Me-b* 

is valid. Here b and M do not depend on ~, a, and t, b > O. 

Remark: It is asssumed in the formulation of the Theorem that  ~ - r E H,  

but it is not assumed that  ~, r E H. I 

We need also the stability theorem for the case when the stationary equation 

(3.2) has an isolated solution r Let Assumption 2 with a -- 0 and Assumption 

3(a) be satisfied, and (3.3) be satisfied for all A E a(L).  Then the following 

well-known result occurs: 

THEOREM 3.2: There is a positive ~ such that for any ~t E E, satisfying the 

condition [ [~-  r _~ e, the solution u(t) of equation (3.1) with initial condition 

u(O) = ~ exists in the space E for any t E [0, ce). This solution is unique and 

the estimation 

Ilu(t)  - r  <_ M e  -bt 

is valid. Here b is an arbitrary number less than bl, M does not depend on ~z 

and t. 
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3.2 LOCAL STABILITY OF WAVES. In Section 2 we have shown existence of 

t ravell ing waves, i.e. s t a t ionary  solutions of the equat ion 

(3.4) On a ( z ' ) A u  + Ou ~ , Ou , o~ = c~;~, + ~ b j ( x  ) ~  + F(~,x ), 
j = l  

in the cyl inder  12 with a bounded  section f~', with bounda ry  condit ion 

(3.5) u(x) = r  x �9 0~ .  

We have proved also tha t  these waves are monotone  in xl .  We app ly  now the 

results  of Section 3.1 to prove local s tabil i ty of waves mono tone  in x l .  

We int roduce spaces E and g .  We put  E = C(i ) ) .  Let n2( f t )  denote  the  

weighted L 2 space with  norm 

II~l l~ = II~ul l~ .  

C0(i)) is a space of cont inuous functions which satisfy the b o u n d a r y  condi t ion 

u = 0, x �9 cOf~ and tend to 0 as Ixl --+ oo and C0,,( l))  is a weighted space,  

u �9 C0, , ( i ) )  if #u  �9 C0(i)).  Consider the spaces 

H ~ = L2(f~) C~ C0(l)) 

wi th  norms  

IMl~o = II~IIL~ + II~llCo 

and H = L~(f~) n Co, , ( l ) )  

and Ilui]H = IluliL~ + Iiulico,., 

respectively. Domains  of linear opera tors  L act ing in H ~ or in H are, respectively,  

D ~ = W2'2(f~) N O  I and D = W2'2(f~) M D~,~, 

where  

and  

2,q D~ -- {u, u E Co(~), Lu E Co(i)), u �9 Wio c (Ft), q > m} 

Dg,o = {u, u E Co, , ( i )) ,  Lu  E C0,o(i)), u C Wl2o'q(f~), q > m}.  

The  weight funct ion # ( x l )  is a sufficiently smoo th  funct ion equal  to 1 for x l  < 0 

and  e x p ( v x l )  for x l  >_ 1. Here v > 0. 

We specify assumpt ions  on F(u,x ' ) .  We suppose  t ha t  it is a bounded  contin- 

uous vector-valued funct ion defined for u E R n, x' C ~'.  I ts  der ivat ive F'~(u, x') 
with  respect  to u is a uniformly continuous mat r ix-va lued  funct ion sat isfying the  
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Lipschitz condition with respect to u uniformly in x' in any bounded domain in 
R n" 

Consider the operator linearized about the stationary solution: 

, Ov m , Ov F'  ' 
Lv = a(x ) a v + c ~  + Z ~ j ( x  )0-~5 + (w(x),~)v, 

j = l  

v ( x ) = 0 ,  x c 0 ~ t  

acting in H with the domain D. We note that the operator T of multiplication 

by tt is a bounded operator from H to H ~ with a bounded inverse. Hence the 
operator L = T L T  -1 acts in H ~ 

We consider the following eigenvalue problems: 

n 

(3.6) a ( x ' ) A ' u +  ~ b i ( x ' )  Ou Oxi + ( -~2a(z ' )  + i~(c + bl(x')) + c _ ( x  ))u = )~u, 
i=2 

(3.7) u(x'  ) = O, x' e On', 

and 

n ) O u  . . 

( 3 . 8 ) a ( x ' ) A ' u + ~ b i ( x '  Oxi + [ - ~ 2 a ( x ' ) + i ~ ( c + b l ( x  ) - 2 ,a(x )) 
i----2 

+ .2a(J) - ~(c+ bl(Z')) + c+(~')]~ = ~ ,  
u(x')  = O, x' ~ 0~ ' ,  (3.9) 

where 

c+(x') =- F ' ( w •  

We denote them P -  and P+,  respectively. 

If the operator L is considered as acting in L 2 with domain W ~'2 or in C ~ 

with domain C TM with corresponding boundary conditions, then its essential 

spectrum is given by all eigenvalues of these problems for all real ~ (see [15], [16], 

[19] ) .  

We note that the spectrum of the problem P -  is connected with the spectrum 

of the operator L -  given by (1.7). Since we assume that all eigenvalues of L -  

are in the left half-plane, then the spectrum of the problem P -  is also in the left 

half-plane if bl(x')  -- boI, where b0 is a constant and I is the identity matrix. If 

the matrix bl is not scalar, it is probably possible that  a part of the spectrum of 

the problem P -  is in the right half-plane. So we assume that the whole spectrum 

of this problem is in the half-plane Re A < 0 for all real 4. 
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We recall t h a t  the  opera to r  L + has eigenvalues in the right half-plane. In 

the  weighted space,  the  essential  spec t rum corresponding to the p rob lem P +  is 

moved to  the  left (cf. [12]). We assume tha t  a posit ive number  v can be chosen 

such t ha t  all eigenvalues of the prob lem P +  are in the left half-plane for all real 

LEMMA 3.1: Consider the operators Au -- Lu with the domain D(A) = 

{u : u E W2,2(ft),  u = 0, x E 012} and Au = Lu with the domain D(A) = 

{ u :  u �9 C~+6(~) ,  u -- 0, x �9 0f~}, where C~+6(~) is a weighted H61der space 

with weight a(Xl) = 1 + x~. Suppose that both operators A and Jt are Fredholm. 

I f  

A u =  f ,  u C D(A),  f E C~((~), 

then u �9 D(A)  and ,4u = f .  

Proo~ Let Uk, k = 1 , . . .  ,p  be a complete  sys tem of solutions of the equat ion 

Au = 0 and vk E L 2, k = 1 , . . .  ,p  be a complete  sys tem of functions or thogonal  

to the image of A. Let gk and  hk, k -- 1 , . . .  ,p  be  smooth  finitary functions 

b ior thogonal  to Uk and vk, respectively. 

Consider  the  f ini te-dimensional  opera tor  

K y  = (g l , y )h l  + ' "  + (gp,y)hp, 

where ( , ) denotes  the  inner p roduc t  in L 2. We set  B = A + K .  T h e n  the 

equat ion B u  -- 0 has only zero solution. 

Consider  the  equat ion By  = f + Ky.  By the Fredholm proper ty  it has a 

solution y = ~ E D(_A). On the other  hand,  y = u is also its solution. Then  by 

uniqueness u = ~). The  l e m m a  is proved. I 

LEMMA 3.2: Let G be the maximal region of the complex plane which contains 

positive real  half-axis and does not contain eigenvalues of the problems P+ and 

P -  for any real ~. 

I f  A E G is a regular point of the operator L as acting in L2(f~), then it is also 

a regular  po in t  of this opera to r  as acting in H ~ 

Proof: Let A be a regular  point  of the opera to r  L as act ing in L2(fl) .  Consider  

the  equa t ion  

(3.10) Lu - ),u = f.  

If  f E H ~ then  u E W2'2(f/) .  We should show tha t  u C Co(~) .  
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Let fn E L2(~) M C~(~), where C~(~) is a weighted H61der space; the weight 

function a can be taken, for example, as a(xl )  = x~ + 1. Since A E G, then 

equation (3.10) is uniquely solvable in W2'2(Q). The operator L - A is Fredholm 

as acting in C~(~)) with the domain C2+~(~)) and its index is zero [19]. The 

dimension of its kernel is zero because C~2+~(~) C W2'2(~2). So (3.10) is uniquely 

solvable in C2+~(~). Hence its solutions un E W2'2(~2) M C2+~(l)). Then u,~ E 

W2'p(~), p >_ 2. 

The sequence {fn} can be chosen in such a way that it converges to f in L2(~) 

and in C(~) .  Then this convergence occurs also in LP(gt), p > 2 and this sequence 

is uniformly bounded in LP(~). We show that the sequence of solutions {un} is 

uniformly bounded in W2'p(~t). For this we use the Agmon-Douglis-Nirenberg 

estimates [1]: 

Ilunllw2,~ < c(llunllL. + Ilfn]lL~), 

Since the functions fn are uniformly bounded in L 2 and A is a regular point of 

the operator L as acting in L 2, then the functions u~ are uniformly bounded 

in W 2'2. Starting with p -- 2 and using embedding theorems, by the standard 

arguments, after a finite number of steps, we obtain that u~ is uniformly bounded 

in W2'P(~) for any given p. Hence u,~ E C1+~(~). From this and convergence 

un -~ u in W 2'2 it follows that u E C 1 (~)). 

It remains to note that  since u 6 W2'2(~)N Cl(~=~), then u(x) -+ 0 as IxI --+ oc 

and u E C0(~). The lemma is proved. I 

THEOREM 3.3: Suppose that the problem P -  has all eigenvalues in the left hMf- 

plane for all real ~ and there exists u such that the problem P+ has all eigenvalues 

in the left half-plane also for all real ~. 

I f  the derivative of the wave Ow(x)/Oxl belongs to the space H,  then it is 

asymptotically stable with shift in this space. 

Proof'. We should verify that Assumptions 1-3 of the previous subsection are 

satisfied. The derivative v = Ow/Ox~ of the travelling wave w(x) satisfies the 

problem 

Lv = O, x E l2, v = O, x E 0 f f .  

Denote u = Tv.  Then u E H ~ and Lu = O. By estimates of solutions of 

elliptic problems we obtain u 6 CI(~) .  From this and the fact that  u E L2(~t), 

multiplying the equality Lu ---- 0 by u and integrating by parts, we obtain that  

u E W1'2(~). By usual arguments we get u E W2'2(~). From Lemma 3.1, 

u E C2+~(l)). Assumptions 1 and 2 follow from this. 
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Consider Assumption 3. I t  is known that  the operator  L with the Dirichlet 

boundary conditions is a generator of the analytic semigroup in L 2 and C (see 

[13]). So it is a generator in the space H ~ It follows that  the operator  L with 

the Dirichlet conditions is a generator in the space H.  

Consider now the location of the spectrum. The spectrum of operator L in the 

space L2(i2) satisfies conditions of Assumption 3(b) (see [18]). From Lemmas 3.1 

and 3.2 it follows that  it is also true in the space H ~ Therefore it is true for 

operator  L in the space H.  The theorem is proved. | 

We study now the case where the derivative of the wave does not belong to 

the space H.  We begin with some auxiliary results. We consider the operator  

j = l  J 

in the domain f / g  C ~ N {Xl _> N} such that  its boundary is sufficiently smooth 

and coincides with 0f~ for xl _> N + 1. We represent Of~N ---- F1 U F2, where F1 

is the par t  of the boundary in 0f~ and F: is the remaining part.  

We assume tha t  the coefficients of the operator are HSlder continuous and have 

limits at infinity and use the superscript + to denote them. The convergence to 
! 

the limiting coefficients is in the HSlder norm with respect to the variables x . 

As above, the matrices 5(x) and bj(x) are diagonal; 5(x) has nonnegative off- 

diagonal elements. We denote C2+~(~N) the space of functions from C2+~(~N) 

equal to 0 on O~N. We consider the operator L, not only on functions from this 

space but  also on functions which do not belong to it. In this case we should 

understand ~,u = 0 as a local equality in a neighbourhood of each point of gl. 

LEMMA 3.3: Let the operator L as acting from C~+~(~N) to C~(~N) have the 

essential spectrum in the left half-plane and be invertible. 

Let f u r t h e r L u = O ,  L v = 0 i n ~ N , U = V = 0 o n F 1 ,  v >  u o n F 2 ,  v >  0 i n  

~N and u-+ 0 as Xl -+ +oz. Then v > u in ~N. 

Proof." The essential spectrum of the operator L is determined by the eigenvalues 

of the problem 

m 
, ,, -+ , O q l Z  ~ , 

a + ( x  + b; + 2 + bl+(X + = 
j = 2  

t 
u = O, x E 0 ~ '  
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in the section of the cylinder for all real 4. In particular, for ~ -- 0 all eigenvalues 

of this problem lie in the left half-plane. Then the problem 

gt+(x')A'w+ ~--~b+(z')~x +~+(x')w=O , 
j=2  3 

w = --~,  x '  C oq~t ' 

is uniquely solvable, and by virtue of the positiveness theorem its solution is 

negative in ~ ' .  We denote it w~ (x'). 

Consider further the problem 

Lw=O, w = - E  on0f tN.  

Existence of its solution follows from the invertibility of the operator L. We 

denote it ~ ( x ) .  Then 

~ ( z )  -~ w~(x'), xl -~ + o ~  

and this convergence is uniform in x'.  We put u~ = u + ~r We have 

L u ~ = 0 i n f t N ,  u ~ = - e  onF1,  u~- -+w~(x ' )<0 ,  X l ~ + O c ,  u~ < v  onF2.  

We show that  

(3.11) u~ < v, x E ftN. 

Indeed, this inequality is satisfied for xl >_ x~ where x~ is sufficiently large, and 

in a neighbourhood of O~g for Xl <: x~. Since v is positive in ftN, then for some 

TO _> 1, U~ < ToY in ~)g- We now dec rease r  from TO to 1. If for so m eT  and 

xo E ~g,  U~(XO) = TV(Xo), then x0 E ~N and we obtain a contradiction with the 

positiveness theorem. Thus (3.11) is proved. 

In the limit as e --+ 0 we obtain u < v in ~N. The lemma is proved. | 

Remarks: (1) If the matrix ~(x) is functionally irreducible and v(x) ~ u(x), 
then v(x) > u(x) in fiN- 

(2) We do not require that  v(x) C C2+~(~N). In particular, it can be 

unbounded. In this case the operator ], is considered not necessarily on functions 

from C2+'~ (ftN ). 
(3) If the coefficients of the operator L, do not depend on Xl, then the invert- 

ibility condition can be omitted. Indeed, in this case we can put ~ (x) - w~ (x'). 
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This function satisfies equation Lw = 0 in nN, equals --e on F1, and is negative 

on F2. 

We introduce the following limiting operators: 

m 
= + Z OH + 

LEMMA 3.4: Let the operator L as acting from C2+~(~) to C~(~) have the 

essential spectrum in the left half-plane, the operator L+ be invertible from 

Co 2+5(r to Cs(~+), and the operator L-  be invertible from C2+~(~0) to 

C~(~o). Here, n + = nN for N = O; n o is symmetric to n + with respect to 

X l : 0 .  

Suppose that Lv -- 0 in n,  v > 0 in n, v = 0 on 0n.  Then there is no solution 

of the equation Lu = 0 in C2+~(~) such that u ~ O, u ~ v and u -+ 0 as 

xl --+ =koc. 

Proof: For N sufficiently large the operator L is invertible from '~0~2+*[r ~ to 

C*(~ +) and from C2+~(~N) to C*(~N). So we can apply the previous lemma 

for it and for these domains. 

Suppose that there exists a solution u(x) E C02+~(~) of the equation Lu = 

0, u ~ 0. Without loss of generality we can assume that at least one of its 

components has positive values in the domain n ~ = f l / ( n  + u nN). Otherwise 

we can change u by - u .  

Denote z -- TV -- U. Then for 7 sufficiently large, z > 0 in flo and Oz/Ov < 0 

on 0 n  ~ M 0n.  Denote TO the minimal value of T for which z still satisfies these 

properties. Clearly To > 0. 

Thus for 7- = To, z(x) > 0 in ~0 and (a) z(xo) = 0 for some xo C ~0 M n or 

(b) Oz/Ov -- 0 at some point on 0 n  ~ M 0n. Then from the previous lemma 

z(x) > 0 in ~. In case (a) we obtain a contradiction with the positiveness 

theorem, and in case (b) with the negativeness of the normal derivative on the 

boundary. The theorem is proved. I 

Remark: For the conditions of the lemma it can be shown similarly that the 

operator L cannot have positive eigenvalues in C02+*(~). 

LEMMA 3.5: Let the operator L+ as acting from C2+~(~ +) to C~(~ +) have the 

essential spectrum in the left half-plane. Then it does not have zero eigenvalue. 

Proof: We apply Remark 3 to Lemma 3.3. For this we construct a positive 

solution v+ of the inequality L+v ~ 0 which is an upper function and provides 
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existence of a positive solution v(x) of the equation L+v = 0. We put 

v + ( x )  = e-~xlr ') 

for some small positive a. The function r should be positive in f~' and satisfy 

the inequality 

, , m _ , 0r , - , + , 
a+(~ )~ r + ~ b](x )Y~x~ + (a+(~)~2 - b+(x )~ + ~ (~))r < 0. 

j = 2  

If a is sufficiently small, we can take as r the principal eigenfunctions of the 

operator  corresponding to the left hand side of this inequality. 

r~2+~((5+~ of the equation Lu = O. Suppose tha t  there is a solution u(x) E '~o k~"o J 

Then u(x) -+ 0 as x l  -+ +oc. Otherwise, A = 0 would be a point of the essential 

spectrum of this operator [19]. Since v(x) > 0 in f~+ and on F2, we can apply 

Remark  3 to the functions rv  and u for any positive T. If  T --+ 0, we obtain in 

the limit u < 0 in ~+.  Changing u to - u  we show that  u > 0. Thus u _-- 0. The 

lemma is proved. | 

Similarly, we show the invertibility of the operator L -  in C2+~(~o).  

The last theorem states the asymptotic  stability without shift when the 

derivative of the wave does not belong to the weighted space. 

THEOREM 3.4: Suppose that the problem P -  has all eigenvalues in the left half- 

plane for all real ~ and there exists v such that the problem P+ has all eigenvalues 

in the left half-plane also for all real ~. 

I f  the derivative of the wave Ow(x)/Oxl does not belong to the space H, then 

the wave is asymptotically stable in this space. 

Proof: We should verify that  all eigenvalues of the operator L in the space H 

lie in the left half-plane. Consider the operator L -- T - 1 L T  in the space H ~ 

where T is the operator of multiplication by #. I t  is sufficient to verify that  all 

its eigenvalues lie in the left half-plane. 

The essential spectrum of this operator is determined by the problems (3.6), 

(3.7) and (3.8), (3.9) and lies in the left half-plane. Suppose that  it has an 

eigenvalue with nonnegative real part.  Then its principal eigenvalue, being real, 

is nonnegative and tends uniformly to zero as xl  -+ -}-oc. We can apply Lemma 

3.4 since the operators 

m 
, ,---, +. ,~ Ou , , Ou 

L+u -~ a+(x )Au-~-~_.. bj (x )~xj  ~- (bTl (x ) -~-C-- 2a+(x )/2) 0Xl 
j=2 

+(a+(x')~ 2 -- (bl+(X ') + e).  + c+(x'))u 
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and 

, m , o ~  + , 0 ~  + ~ - ( x ' ) ~  
L--U = a--(z )Au -1- ~ b;(::g )~jxj -t- (b I (x) -t- C)0Xl 

j=2 

are invertible (i.e. they do not have zero eigenvalue) as acting from ~0 ~~ 

to C~(~ +)  and from C02+~(~N) to C~(~N), respectively (Lemma 3.5). 

Thus we have shown that  the equation Lu -- Au with nonnegative A cannot 

have nonzero solutions converging to zero at infinity and different from the func- 

tion v -- - O w / O x l  #. Hence the corresponding eigenfunctions cannot belong to 

the space H ~ Otherwise it would converge to zero at infinity and, consequently, 

coincide with v. This contradicts the assumption that  the derivative of the wave 

does not belong to the weighted space. The theorem is proved. | 
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