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ABSTRACT

The paper is devoted to the existence and stability of travelling waves
described by monotone parabolic systems in the monostable case. The
first initial-boundary value problem is considered. Existence of waves is
proved for all values of the velocity greater than or equal to the minimal
velocity. A minimax representation for the minimal velocity is obtained.
Stability of monotone waves in a weighted norm is proved.

1. Introduction

We consider the parabolic system of equations

(1.1) ‘Z't‘ Au+2b —+F(uw)

in a cylinder © = Q' x R. Here u(z) = (u(), ..., un(z)), T = (21, ..., Tm), &1 is
the variable along the axis of the cylinder, z = (2, ..., Try) is the variable in the
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section ' of the cylinder, the domain Q' is bounded and has a boundary of the
class C2+% with some positive 8, a(z'), b; (z') are smooth diagonal matrices,

1 7

ai(z')2a0>0, z €N, i=1l.,n, j=1.,m,

where a; are diagonal elements of the matrix a, F = (F,...,F,;) is a smooth
vector-valued function. On the boundary 9Q of the cylinder we consider the
boundary conditions

(1.2) wz)=¢(z), z e,

where ¢(a:l) € C**+%(Q) depends only on the variable in the section of the cylinder.
The travelling wave solution of the problem (1.1), (1.2) is a solution of the
form
u(z,t) = w(zy — ct, T2,y .y Tm),

where ¢ is an unknown constant, the wave velocity. This function is a solution
of the problem

: ow i r Ow ;
(1.3) a(z )Aw+cz9;; —|-j§=:1bj(z )8—% + F(w,z ) =0,

w(z) =z ), =€

We assume that for n > 1 the nonlinearity F satisfies the following condition:

OF; L
8uz- >0, i#34, i,j=1,...,n
J
This condition means that we can use comparison theorems for the systems under
consideration. For n = 1 there are no additional conditions and the comparison
theorems are also applicable. The systems of this type arise in numerous appli-
cations (see [15]).
We look for the travelling waves having limits at infinity:

(1.4) lim w(z) =wi(z),

Iy —Fo0
where the functions w4 are solutions of the problem in the section of the cylinder:

’ ’ i ’ 6 ’
(1.5) a(z)A wi+Zb,.(x)—a—';’—%+F(wi,z)=o,
i=2 1

(1.6) wi(z) =¢(x), « €89,
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where A’ is the Laplace operator with respect to the variables in the section of
the cylinder.

We recall the classification of the problems according to stability of solutions
wy and w_. We consider the eigenvalue problem for the corresponding linearized
equation

(1.7) LFu=a(z)A'u + ij(z’)% + F (we(z), 7 )u = Au
=0 7

(1.8) u=0, z €.

If all eigenvalues of both operators L™ and L~ are in the left half-plane, then it
is the so-called bistable case. If for one of them there are eigenvalues in the right
half-plane and for another one all eigenvalues have negative real parts, it is the
monostable case. Finally, in the unstable case both operators have eigenvalues
in the right half-plane. As is well known (see [15]) properties of travelling waves
are different in these three cases.

In this work we study the monostable case. We suppose that all eigenvalues of
the operator L~ have negative real parts, and there are eigenvalues of the operator
L+ with positive real parts. For the one-dimensional scalar equation (m =n =1)
this problem was first studied in [7] and then followed by a large number of other
works (see [15] for the references). For the multidimensional scalar equation the
problem was considered in [2]-[4], [6], [14] and for one-dimensional systems of
equations in [15], {17]. In this work we consider multidimensional systems of
equations and develop the methods and results suggested in our previous works
for one-dimensional systems.

Proof of the existence of travelling waves is based on the comparison theorems
which are valid for the systems under consideration. We first prove existence of
solutions of some auxiliary problems in half-cylinders and then, passing to the
limt, we obtain existence of solutions in the whole cylinder.

Stability of travellig waves with respect to small perturbations is based on the
analysis of the spectrum of the linearized operator which can have independent
interest. Consider the linear operator

m
Ju
Lu = a(z)Au + 15;1 b; (:c)a—mj + c(z)u
assuming that the matrices a, b;, c are sufficiently smooth, a and b; are diagonal, ¢

has nonnegative off-diagonal elements and is functionally irreducible. We consider
this operator on functions u € C?*4(Q) satisfying the boundary condition u = 0
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on 09Q. Denote o, the supremum of the real parts of the points of the essential
spectrum of this operator, and o4 of its discrete spectrum. In [18] we showed
that if o4 > o, then the principal eigenvalue of the operator is real, simple, and
the corresponding eigenfunction is positive. Since the derivative of the monotone
in 1 wave is an eigenfunction corresponding to zero eigenvalue, then it allows us
to conclude that all other eigenvalues are in the left half-plane and to prove the
stability of the monotone wave.

However, we can make this conclusion only in the case if the essential spectrum
lies in the left half-plane, i.e. 0., < ¢4. This inequality holds in the bistable case,
but not in the monostable case considered in this work. In the monostable case
0. > a4, and to move the essential spectrum to the left half-plane we introduce
a weighted norm. If the derivative of the wave belongs to this weighted space,
we can still use the result above. So the question is what happens if it does not
belong to this space. In other words, we have a positive solution v of the equation
Lu = 0 which should be understood as a local equality because the function v
may not belong to C?+3()) and may even be unbounded. We show that in this
case all eigenvalues of the operator lie in the left half-plane. It is a generalization
of the results obtained in our previous work [17] for one-dimensional systems.

The contents of the paper are as follows. In Section 2 we prove existence of
waves for all values of velocities greater than or equal to the minimal velocity
cg- We obtain a miminax representation for the minimal velocity and show that
there are no waves with velocity less than ¢g. In Section 3 we prove stability of
waves in a weighted norm.

2. Existence of waves

2.1 MAIN THEOREM. We make the following assumptions on the solutions w4
and w_ of the problem (1.5), (1.6).

Assumption 1: The functions ws belong to C®*9)(Q') and the following
inequality

(2.1) wi(z) <w_(z), zeQ

holds.

Assumption 2: There are no other solutions of the problem (1.5), (1.6) satisfying
the inequality

(2.2) wi(z)<w<w_(z), z € Q.
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Assumption 3: There exists a sequence of functions {vn(a:’)} uniformly bounded
in C**+9)(Q)') satisfying the inequality (2.2) and the following conditions:

(2.3) V(T ) = wi(z) asn — oo

uniformly in x',

’

’ ’ m ’ 6’(}"
(2.4) a(z )A vn+jz:—2bj(a:)67j+F(vn,x)ZO,

(2.5) va(z) =¢(z), z €09.

The last assumption can be formulated in terms of eigenvalues of the linearized
problem. We discuss it below.

We prove first the theorem on wave existence under Assumptions 1-3. We will
show below that Assumption 2 is not always necessary and can be replaced by a
weaker assumption.

THEGREM 2.1: Let Assumptions 1-3 be satisfied. Then there exists a constant
¢g such that for every ¢ > ¢y there exists a monotone in x, solution of the problem
(1.3), (1.4). The constant cq is given by the minimax representation

o 0= itk o2 B

where

@7 Bi= (ai(wl)A"i + Xm:bij(wl)% + Fi(p, x’))/( _ 9 ),
j=1 Oz; Oz,

b;; are diagonal elements of the matrix b;, K is a class of sufficiently smooth
vector-valued functions p(z) such that

(2.8) lim p(z) =wil(z), plz)= d(c) forz € BN,

z1—Foo
the derivative Op/0x; Is negative and the normal derivative 3(p—wy (z))/0v, x €

O in the direction of the outer normal is also negative.
For ¢ < ¢g such solutions do not exist.

Remark: We show below that there exists a function p(z) such that B; is
bounded and that the minimal value of the velocity given by (2.6) is finite.

Proof: 'We take ¢ > cy. Then there exists a function p for which sup, ; B; < c.
It means that

’ ap hide ’ ap 1
(2.9) a(z )Ap+ca—z1+j§b,(m)5;;+F(p,w)<O
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for all z € Q. For any given N we can choose a function v (z ) which satisfies
Assumption 3 and such that

(2.10) wi(z) < vr(z) < p(x) loy=n -

Indeed, since p — w, as 13 — oo and the derivative Op/dz; is negative, then for
all internal points z we have the inequality

(2.11) wi(z) < p() loy=n -

On the other hand, vy & w4 as £ — oo. Then for k sufficiently large the
inequality (2.10) holds in any closed domain Qi) cqQ.

From the convergence (2.3) and the uniform boundedness of the second deriva-
tives of the functions v there follows the convergence of the first derivatives:

6’0k _ 8w+
8.’[,' 8z,»

(2.12) =0, i=1,...,m

uniformly in # . Since the derivative &(p — w, (z'))/dv, z; = N is negative, we
obtain the inequality (2.10) for all z' € Q' and sufficiently large k.

We introduce a domain Qx C €2 located in the half-space {z; < N} and such
that Qy = Q for z; < N — 1, and the boundary 8Qy belongs to C+%). We
consider now the initial-boundary value problem for the equation
(2.13)

%t ai@) [ 25 1S, '?i et
at_.Aqua (z) C@:c1+j;b]( ) + F(u,z) — f(z e

in the domain @y with the initial condition
(2.14) u(z,0) = v(z ),

and the boundary conditions

’

(2.15) w(z,t) |loay= vk(z ).
Here

fl)= Avk+2b a—”’“—+F(vk, ).

To show existence of the classical solutlon of this problem, we construct a
sequence of bounded domains QY;, i = 1,2,... with sufficiently smooth boundary
and such that

1.+l U Qz — QN
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and consider equation (2.13) with initial condition (2.14) in the domain €%, with
the boundary condition

7

(2.16) u(:r,t) laﬂ’j\,: vk(:n )

We note that the compatibility condition for the problem (2.13), (2.14), (2.16) is
satisfied. So the classical solution exists (see [8]).

We show that the solution of the problem (2.13), (2.14), (2.16) satisfies the
inequality
u(z,1) < p(a).
Indeed, the function

2(z,t) = u(z,t) - p(z)

satisfies the equation

0z 1, 0z e _ ﬁ N NS Nt
% —Acta (m>(caxl+§b](x)azj+ﬁ’(u,x) Flp.d) = 1) =)

where

— (o O | Sy )08 '
g(z) = <a(a: )Ap+c&v1 +;b3(x )6zj +F(p,x)) > 0.

Since z(z,0) < 0, z(z,t) lags:, < 0, f(z') and g(z) are nonnegative, then z(z,t)
<0forallt>0andze QY.

We note that the solution of the problem (2.13), (2.14), (2.16) increases in
time. Indeed, the function v = Ju/dt satisfies the problem

v v v / /
= A -1 el b —— —t
ot v+a (08x1+k2=:1 kazk+F(u1$)v+fe )7
v |=0=10, v s =0.
Then v(z,t) > 0 and u(z,t) > ve(z ).
So the solution u¥(z,t) of the problem (2.13), (2.14), (2.16) is bounded inde-

pendently of 7 in C and, consequently, in the C(?+%)_norm. Choosing a converging

subsequence, we obtain a classical solution un(z,t) of the problem (2.13)-(2.15).
As before we show that

wi(z) < welz) < un(z,t) < p(e)
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and uy(z,t) is increasing in ¢t. Passing to the limit as t — oo, we obtain a solution
wn(z) of the equation (1.3) in the domain Qx with the boundary condition

wy |aanoay= ¢z ).

It is bounded in the C?+9)_norm independently of N. Moreover

’

wi(z ) < wnfz) < p(z).

We note also that dwy /021 < 0. Indeed, the function z = Quy /Jz; satisfies the
problem

0z =
5 =Az+a” (c—+2bk——+F ux) )

Zlagn =0, z|t=0 =0,

and z|sn, < 0 since un(z,t) > v(m'). Then z < 0.
Since the function wy(z) is monotone in z;, then there exists the limit

wl_\,(z') hmoo wy(z)-

It satisfies the problem (1.5), (1.6) and the inequality

w(z) < w;,(x’) < w_(a:/).
Then wy = w_.
Thus we have constructed the sequence of functions {wny}, N = 1,2, ... defined
for £; < N. We show now how to construct the solution in the whole cylinder €.
We choose an arbitrary interior point in 2. Without loss of generality we can
assume that it is z = 0. Denote zy = (z15,0"" 1), where 0" ! is a (n— 1)-vector
with zero elements, z;  is a solution of the equation

w1 (z1,0"71) = p1(0,0"71).

Here the index 1 shows the number of the component of the vector-valued func-
tion. Existence and uniqueness of the solution follow from the monotonicity of the
function wy in z;. Denote further wy(z) = wy(z+zn) so that wy(0) = p1(0).

Since wy(0) < p1(0), then zx < 0 and the functions wiy are defined at least
for 1 < N. Since the derivatives of these functions are uniformly bounded, then
for any given M from the sequence {wy } we can choose a subsequence converging
to some limiting function uniformly on the set @ N {{-M, M]}. If we consider
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now a sequence of M going to infinity and choosing each time a converging
subsequence, we obtain the limiting function w(z) defined in the whole 2. It is a
solution of equation (1.3) as a limit of solutions of this equation, and it satisfies
the boundary conditions (1.2). The function w(x) has a nonnegative derivative
with respect to z;. Hence there exist the limits of w(z) as z; — too. We have

w41(0) <wn1(0) = p1(0) < w—,(0).

Since the limits limg, 400 w(z) satisfy the problem (1.5), (1.6), then we
necessarily obtain (1.4).

We have already mentioned that the derivative dw/0z; is not positive. We
show now that it is strictly negative assuming that the matrix JF; /0w, is func-
tionally irreducible. Indeed, the function y = Jw/0z; is a solution of the problem

n

/ e N JF;
a{z )Ay+cay +Zbij(m)gy—+z—(w(myi:0,
1 ;

oz (9117]' 6wj
ylaa =0,

and y > 0. By the positivity theorems yx > 0 in Q or y; = 0. The latter cannot
take place because w(z) has different values at z; = 0.

Thus the theorem is proved for ¢ > ¢.

To show existence of a travelling wave for ¢ = ¢y we consider a sequence
{en}, ¢n > cgp, converging to ¢p. From the corresponding sequence of waves
{w(")} with the velocities ¢, we can choose a subsequence converging to some
limiting function wg. It satisfies equation (1.3) with ¢ = ¢y and the boundary
conditions.

Consider finally the case ¢ < ¢g. Suppose that there is a solution w(z) of the
problem (1.3), (1.4) monotone in z;. By virtue of the maximum principle the
normal derivative O(w —w.)/3n on the boundary of the cylinder is negative, and
w € K. Then

cp > inf sup B;.

PEK g4

This contradiction proves the theorem. |

We note that Assumption 3 means that the principal eigenvalue of the operator
L* given by (1.7), (1.8) is nonnegative. If we suppose that it is positive, then we
can put

va(2) = wi(e) + Tuo(z),
where 7, > 0 and 7, = 0 as n = 00; ug is an eigenfunction corresponding to the
principal eigenvalue. Since ug(z') > 0, ' € Q', then the functions v, defined in
this way satisfy Assumption 3.
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2.2 EXAMPLE OF A TEST FUNCTION. We present here an example of a test
function for which the expressions B; given by (2.7) are bounded. It will show
that the minimal velocity is bounded and the waves exist.
We put
p(@) = wi (@) +P@)(w-(z) —wi(2)),
where ¥’ (1) < 0, ¥(—00) = 1, 9(c0) = 0. Then

~-B; = 01(93’)1/}— + b“(m')

wl
(2.17) + Y[Fi(wy,3) — F(w_,z)] + Fy(wy + dp(w- —wy),z) — Fi(wy,z)
. d)/(w_ _w+)i .

We can choose the function (z) such that e /1/)' is bounded for all , ¥/t
is bounded at +oco and (1 — 1/))/¢' at —oo. This means that it approaches
exponentially its limits at infinity. We show that the third summand in the right
hand side of (2.17) remains bounded.

We note first that the expression (w— —wy );/(w_—wy); is bounded for z eQ.
Indeed, in the interior points of Q' it follows from the inequality w_ > w,. On

the boundary
Ow_ _ Owy
v ov '
As ' — 89, the numerator of the last term in (2.17) has the form

$(B(z)(wy — w_))i + (B@)p(w- — wy))s,

B(z) = /01 F (wy +t(w_—ws),o )dt, B(z) = /01 F (wy +t(w_—wy ), o )dt.
When z; — 400, we represent it in the form
Y[Fy(wy,z) — Fi(w_, )] + $(B(@)(ws — w-))s.
Finally, as 21 — —o0, we can consider it in the form
(1 - ¥)[~Fi(ws.a) + Fi(w_,2)] + (1 - $)(B(a) (ws — w-))s,

where
1
B(z) = /0 F (wy + p(w— — wy) + 11 — ) (wy — w_))dt.

In all three cases, divided by % (w_ — wy), it remains bounded.
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Thus we have shown that ¢y in the theorem is bounded from above, and the
waves exist. Its boundedness from below follows from Theorem 2.2 (see also
(2.19)).

2.3 SIGN OF VELOCITY. We show that if the principal eigenvalue of the operator
L* is positive, then the wave velocity is positive.
Consider the operator

AWw) =a(z)A v+ Zbk(w')gs—k + F(v,z)
k=2

acting on the functions from C2+9(Q)') with the boundary condition

v(z)=¢(z), = €dQ.

Let
@) =wi(z) +uz),
where
u(x') >0, T € QI, u(x') =0, z €89,
Then
A(v) = Ltu + B(z )u,
where

1
B(z)= /0 F;(w+ + tu,z )dt — F:,(w+,:z:/).

Denote )¢ the principal eigenvalue of the operator Lt and u* (z') the corres-
ponding eigenfunction of the adjoint operator L*". Then

J= /QI (u*,A(U))dm’ =X /Q’ (u*,u)dz +/ (u*,B(m')u)dm'.

QI

By assumption, Ag is positive. The eigenfunction u* is positive in Q if

F'(wy(z'),z') is functionally irreducible. If we assume that the derivative F,
satisfies the Lipschitz condition, then for any function v positive in Q' and suffi-
ciently small in C-norm, J > 0.

Equation (1.3) can be represented in the form

w ow

Denote

’

2(z) = w(z) —wy(z ).
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Then o2 5
z z
aém—% + (c+ bl)a—w1 + A(w) =0.

Multiplying this equation by u* and integrating over QI, we obtain

. 0% ' . 0z ’ . /
/Q’ (u ,aa—z%> dz +/ﬂ, (u ’(c+b1)6_1:;)'dz +/Ql(u ,A(w))dz = 0.

Since w(z) — w4 (z') as £1 — 400 uniformly in 2, then there exists 2J such that
the last integral in the left hand side of this equality is positive for all z; > 9.
Let 2} > 9. We integrate the last equality from z? to z}:

/ (u* a£> d:cl—/ (u* aéz—)
o ’ 8.’1)1 :r,} Q ’ 81‘1

(2.18) - /Q (W, (c+b)2)|ogde + / /Q (W, A(w))dz’ =0.

de + / (u*, (¢ + b1)2)| 1 dz
9 Q '

We note that the second derivative 822/8z% is bounded. Since z(z) — 0 as
1 — +00, then the first integral in the left hand side of (2.18) tends to zero,
and the last integral increases and tends to a finite limit. Passing to the limit in

(2.18) as z; — 400, we obtain
: , 0z
z(I)d.’]') Z_/QI (’U,,ag:;l')z

+/;: /Q/(u*,A(w))ldxl.

The right hand side of the last equality is positive. Then ¢+ b, (x') # 0 and, if
c+by(z') #0, then ¢+ by (z) > 0.
We have proved the following theorem.

dz’

0

(2.19) /Q (W, (c+b)2)

THEOREM 2.2: Suppose that the principal eigenvalue of the operator LY is pos-
itive. Then for any wave monotone in z1, c+by(z ) # 0 and, if c+ by (z') # 0 for
allz € Q' then ¢+ by (:c') > 0. If by =0, then c is positive.

COROLLARY 1: Let cy(by) denote the value of the minimal velocity as a functional
determined by the coefficient by (z ). If

co(0) > ma.xbl(:l:’) —minby(z),
T T

then
co(h) +bi(z) > 0.
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COROLLARY 2: Suppose that by = 0 and the principal eigenvalues of both
operators Lt and L~ are positive. Then monotone waves do not exist.

Proof: If a monotone wave existed, we could repeat the same construction for
z1 = —oo and obtain ¢ < 0.

Remarks: (1) The last assertion shows that monotone waves do not exist in the
unstable case. The sign of the wave velocity is determined by local properties of
the operators in small neighbourhoods of wy and w_. So this results remains
valid for wider classes of equations than we consider in this work (cf. [15], [17]).

(2) In the case by = 0, Theorem 2.1 remains valid if instead of Assumption
2 we require that there is a finite number of solutions of the problem (1.5},
(1.6) satisfying (2.2) and, for all of them except w_, the corresponding linearized
operators have eigenvalues in the right half-plane.

3. Stability of waves

3.1 SPECTRUM AND STABILITY. We begin with some general results on stability
of stationary solutions in Banach spaces. Their proofs are given in [15], [16]. In
the next subsection we use them to prove stability of travelling waves.

We consider the equation

(3.1) (2—1: = Au+ f(u)

in a Banach space E. Here u(t) € E for all t € [0,00), A is a linear and f a
nonlinear operator, acting in F.
Let the stationary equation

(3.2) Au+ f(u) =0

have a family of solutions u = ¢, € E. Here a is a real parameter, o € (—&, @).
We present the results on the stability of the stationary solutions with respect to
small perturbations in an arbitrary Banach space H C E.

Let the following conditions on ¢4, f(u), and A be satisfied:

Assumption 1: (a) There exists the derivative ¢_, of the stationary solution with
respect to a, a € (—a&, a), taken in the norm of the space H, ¢>; € H (it is not
assumed here that ¢, € H).

(b) ¢., satisfies the Lipchitz condition in &, € (—@&,@) in the norm of the
space H.
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Assumption 2: (a) Nonlinear operator f(u) is defined on the whole E, is
bounded and has the first Gateaux differential f (u) in an arbitrary direction
v in the space E, u,v, f (u)v € E.
(b) The Géteaux differential f (u)v is continuous in u € E for any fixed v € E.
(¢} The operator f (¢q + v) is bounded in H for v € H, o € (—a&,a) and
satisfies the Lipschitz condition in v for ||v]| < 1. Here || - || is the norm in H.

Assumption 3: (a) There is a restriction of the operator A, acting in H, which
is a generator of an analytical semi-group.

(b) The spectrum o(L) of the operator L = A+ f (¢o) is as follows: zero is a
simple eigenvalue; all other points of the spectrum lie in a closed angle situated
in the left half of the complex plane. This means that there are positive numbers
a1 and by such that

(33) ReA+al|Im)\|+b1§0
for A € o(L), A #0.

THEOREM 3.1: Let Assumptions 1-3 be satisfied. Then there is a positive €
such that for any @ € E satisfying the condition | & — ¢o| < ¢, the solution u(t)
of equation (3.1) with initial condition u(0) = @ exists in the space E for any
t € [0,00). This solution is unique, and for some a € (—&, &) the estimation

lu(t) ~ ¢all < Me™

is valid. Here b and M do not depend on i, o, and t, b > 0.

Remark: It is asssumed in the formulation of the Theorem that 7 — ¢g € H,
but it is not assumed that 4, ¢o € H. 1

We need also the stability theorem for the case when the stationary equation
(3.2) has an isolated solution ¢g. Let Assumption 2 with o = 0 and Assumption
3(a) be satisfied, and (3.3) be satisfied for all A € o(L). Then the following
well-known result occurs:

THEOREM 3.2: There is a positive € such that for any 4 € E, satisfying the
condition ||@ — ¢ol| < €, the solution u(t) of equation (3.1) with initial condition
u(0) = 4 exists in the space E for any t € [0,00). This solution is unique and
the estimation

lu(t) — ¢()| < Me™™
is valid. Here b is an arbitrary number less than b;; M does not depend on 4
and t.
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3.2 LOCAL STABILITY OF WAVES. In Section 2 we have shown existence of
travelling waves, i.e. stationary solutions of the equation

Ou

(3.4) 5=

Ou .
(:E)Au+ca—+2b (x J+F(u,z‘),

in the cylinder Q with a bounded section Q', with boundary condition
(3.5) u(z) = ¢(z'), z €.

We have proved also that these waves are monotone in z;. We apply now the
results of Section 3.1 to prove local stability of waves monotone in z;.

We introduce spaces E and H. We put E = C(Q). Let L%(f2) denote the
weighted L? space with norm

lleellzz = llpul 22

Co(€)) is a space of continuous functions which satisfy the boundary condition
u =0, z € 00 and tend to 0 as |z| — oo and Cj,(f) is a weighted space,
u € Cp,,(Q) if pu € Co(2). Consider the spaces

H® = LX) NnCo() and H = L5(2) N Co,u(D)

with norms
lullgo = llullz2 + llulle, and [lulla = llullzz + [lvllc,,
respectively. Domains of linear operators L acting in H® or in H are, respectively,
D’ =w**(Q)nD§ and D=W2*Q)NDE,,

where

D§ = {u, u € Co(Q), Lu € Co(Q), u € WEHQ), ¢ > m}

loc

and
DE = {u, u € Cou(Q), Lu € Cou(Q), u € W2I(Q), ¢ > m}.

loc
The weight function u(z;) is a sufficiently smooth function equal to 1 for ; < 0
and exp(vzi) for z; > 1. Here v > 0.
We specify assumptions on F(u,z ). We suppose that it is a bounded contin-
uous vector-valued function defined for u € R, z' € Q. Its derivative F,(u,z’)
with respect to u is a uniformly continuous matrix-valued function satisfying the
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Lipschitz condition with respect to v uniformly in z in any bounded domain in
R™.
Consider the operator linearized about the stationary solution:

6’1) ’ ’
8m + F (w(z),z v,

v(x) :0, z € 0N

Lv=a(z )Av+c—a-—+2b

acting in H with the domain D. We note that the operator T of multiplication
by p is a bounded operator from H to H® with a bounded inverse. Hence the
operator L = TLT~! acts in H°.

We consider the following eigenvalue problems:

(3.6) a(z Au+2b (—a(z) + it(c+ by(z)) + c—(z ))u = M,

=2
(3.7 u(x ) =0, z €09,

and

(3.8) a(z )A'u + Z bi(z )%Jr[—g?a(m‘) +it{c+by(z) — 2valz))

+v2a(z) - v(c+ bi(e)) + ey (2 )u = M,
(3.9) u(xl) =0, z €89,

where
cr(z) = F (we(z), 7).
We denote them P~ and P7, respectively.

If the operator L is considered as acting in L? with domain W2 or in C?¢
with domain C?*® with corresponding boundary conditions, then its essential
spectrum is given by all eigenvalues of these problems for all real £ (see [15], [16],
(19])-

We note that the spectrum of the problem P~ is connected with the spectrum
of the operator L~ given by (1.7). Since we assume that all eigenvalues of L~
are in the left half-plane, then the spectrum of the problem P~ is also in the left
half-plane if b; (m') = bgl, where bg is a constant and I is the identity matrix. If
the matrix b; is not scalar, it is probably possible that a part of the spectrum of
the problem P~ is in the right half-plane. So we assume that the whole spectrum
of this problem is in the half-plane Re A < 0 for all real .
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We recall that the operator L™ has eigenvalues in the right half-plane. In
the weighted space, the essential spectrum corresponding to the problem P* is
moved to the left (cf. [12]). We assume that a positive number v can be chosen
such that all eigenvalues of the problem P* are in the left half-plane for all real

£.

LEMMA 3.1: Consider the operators Au = Lu with the domain D(A) =
{u:ue W2Q), u=0, zec d and Au = Lu with the domain D(A) =
{u:u € C(Q), u=0, z € 00}, where C2+%() is a weighted Holder space
with weight o(z,) = 1+23. Suppose that both operators A and A are Fredholm.
If

Au=f, weD(A), feCiQ),

then u € D(A) and Au = f.

Proof: Let ug, k= 1,...,p be a complete system of solutions of the equation
Au=0and vx € L?, k=1,...,p be a complete system of functions orthogonal
to the image of A. Let gx and hg, K = 1,...,p be smooth finitary functions
biorthogonal to u; and v, respectively.

Consider the finite-dimensional operator

Ky = (g1, y)h1 + -+ (gp, ¥) Py,

where ( , ) denotes the inner product in L?. We set B = A + K. Then the
equation Bu = Q has only zero solution.
Consider the equation By = f + Ky. By the Fredholm property it has a

solution y = § € D(A). On the other hand, y = w is also its solution. Then by
uniqueness u = §. The lemma is proved. ]

LEMMA 3.2: Let G be the maximal region of the complex plane which contains
positive real half-axis and does not contain eigenvalues of the problems P+ and
P~ for any real €.

If A € G is a regular point of the operator L as acting in L2(Q), then it is also
a regular point of this operator as acting in HO.

Proof: Let X be a regular point of the operator L as acting in L?(2). Consider
the equation

(3.10) Lu—du=f.

If f € HO then u € W22(Q). We should show that u € Cy(Q).
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Let f, € L2(Q) N C(Q), where C4(f) is a weighted Hélder space; the weight
function ¢ can be taken, for example, as o(x1) = z? + 1. Since A € G, then
equation (3.10) is uniquely solvable in W22(Q). The operator L — A is Fredholm
as acting in C%(Q) with the domain C2+°(Q0) and its index is zero [19]. The
dimension of its kernel is zero because C2+¢(€)) c W22(). So (3.10) is uniquely
solvable in C2+4(Q). Hence its solutions u, € W22(2) N C2+%(Q). Then u, €
wr(Q), p> 2.

The sequence { f,} can be chosen in such a way that it converges to f in L*(2)
and in C(Q). Then this convergence occurs also in LP(§2), p > 2 and this sequence
is uniformly bounded in LP(Q2). We show that the sequence of solutions {u,} is
uniformly bounded in W??(Q). For this we use the Agmon-Douglis-Nirenberg
estimates [1]:

Funllwas < clllunllzs + [ fallzo).

Since the functions f, are uniformly bounded in L? and X is a regular point of
the operator L as acting in L?, then the functions u, are uniformly bounded
in W22, Starting with p = 2 and using embedding theorems, by the standard
arguments, after a finite number of steps, we obtain that uy, is uniformly bounded
in W2?(Q) for any given p. Hence u, € C'*°({2). From this and convergence
un — u in W22 it follows that u € C*(Q).

It remains to note that since u € W2(Q) N C1(Q), then u(z) — 0 as |z] = oo
and u € Cy(R). The lemma is proved. |

THEOREM 3.3: Suppose that the problem P~ has all eigenvalues in the left half-
plane for all real ¢ and there exists v such that the problem P has all eigenvalues
in the left half-plane also for all real §.

If the derivative of the wave dw(z)/8z1 belongs to the space H, then it is
asymptotically stable with shift in this space.

Proof: We should verify that Assumptions 1-3 of the previous subsection are
satisfied. The derivative v = fw/0z; of the travelling wave w(z) satisfies the
problem

Lv=0, z€Q, v=0, ze€o

Denote u = Tv. Then u € H? and Lu = 0. By estimates of solutions of
elliptic problems we obtain u € C*({). From this and the fact that u € L(%2),
multiplying the equality Lu = 0 by u and integrating by parts, we obtain that
u € W12(Q). By usual arguments we get u € W>?(Q). From Lemma 3.1,
u € C2+3(Q)). Assumptions 1 and 2 follow from this.
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Consider Assumption 3. It is known that the operator L with the Dirichlet
boundary conditions is a generator of the analytic semigroup in L? and C (see
[13]). So it is a generator in the space H®. It follows that the operator L with
the Dirichlet conditions is a generator in the space H.

Consider now the location of the spectrum. The spectrum of operator L in the
space L%(Q) satisfies conditions of Assumption 3(b) (see [18]). From Lemmas 3.1
and 3.2 it follows that it is also true in the space HY. Therefore it is true for
operator L in the space H. The theorem is proved. |

We study now the case where the derivative of the wave does not belong to
the space H. We begin with some auxiliary results. We consider the operator

m
Lu = a(z)Au+ ;bj(x)%’; +&z)u
in the domain Qy C QN {z; > N} such that its boundary is sufficiently smooth
and coincides with 9Q for #; > N + 1. We represent 0Qy = I'; UTs, where I'y
is the part of the boundary in 60 and I'y is the remaining part.

We assume that the coefficients of the operator are Hélder continuous and have
limits at infinity and use the superscript + to denote them. The convergence to
the limiting coefficients is in the Hoélder norm with respect to the variables .

As above, the matrices a(x) and b;(z) are diagonal; &(x) has nonnegative off-
diagonal elements. We denote C2+%({1y) the space of functions from C?+%(Qy)
equal to 0 on 9y. We consider the operator L not only on functions from this
space but also on functions which do not belong to it. In this case we should
understand Lu = 0 as a local equality in a neighbourhood of each point of €.

LEMMA 3.3: Let the operator L as acting from C2+%(Qy) to C°(Qy) have the
essential spectrum in the left half-plane and be invertible.

Letfurtheriu:O, Ev:OinQN,u=v=00nF1,vZuonI‘z,v>01'n
Qn and u — 0 as z; — +oo. Then v > u in Q.

Proof: The essential spectrum of the operator L is determined by the eigenvalues
of the problem

atz)Au+ Y 5}“(9:’)% + (—at (@) + b} (z)i€ + &7 (z ))u = A,
e ;

u =0, z €89
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in the section of the cylinder for all real £&. In particular, for £ = 0 all eigenvalues
of this problem lie in the left half-plane. Then the problem

’ ’ s ~ ' 611) ’
o + S+ _
a (m)AuH-]Z:;bj (a:)a—xj—i-c (z))w =0,
w = —¢, z €00

is uniquely solvable, and by virtue of the positiveness theorem its solution is
negative in 2. We denote it we(z').
Consider further the problem

Lw=0, w=-—e ondy.

Existence of its solution follows from the invertibility of the operator L. We
denote it @e(z). Then

7

We(z) = we(z ), 1 — +00
and this convergence is uniform in z . We put ue = u + w,. We have
Luc=0in Qn, ue = —€ on Ty, ue = we(z ) <0, T = +00, ue <v on Iy.

We show that

(3.11) v <v, z€Qn.

Indeed, this inequality is satisfied for z; > =] where z7 is sufficiently large, and
in a neighbourhood of dQy for z; < zj. Since v is positive in 2, then for some
70 > 1, ue < Tov in Qn. We now decrease 7 from 19 to 1. If for some 7 and
zo € Qn, uc(zg) = Tv(T0), then zo € N and we obtain a contradiction with the
positiveness theorem. Thus (3.11) is proved.

In the limit as € — 0 we obtain « < v in 5. The lemma is proved. [ |

Remarks: (1) If the matrix &) is functionally irreducible and v(z) # u(zx),
then v(z) > u(z) in Qn.

(2) We do not require that v(z) € CH3(Qly). In particular, it can be
unbounded. In this case the operator L is considered not necessarily on functions
from C2H8(Qy).

(3) If the coefficients of the operator L do not depend on z;, then the invert-
ibility condition can be omitted. Indeed, in this case we can put @.(z) = we(z).
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This function satisfies equation Lw = 0 in Qy;, equals —e on I'y, and is negative
on I's.

We introduce the following limiting operators:
=at(z)Au+ Z b (z &t (x)u.

LEMMA 3.4: Let the operator L as acting from Cat®(Q) to C%(Q) have the
essential spectrum in the left half-plane, the operator L* be invertible from
CE () to C(QF), and the operator L~ be invertible from C2¥(Q)5) to
C%(Qy). Here, Qf = Qn for N = 0; Qg is symmetric to ) with respect to
1 =0.

Suppose that Lv =0in Q, v > 0in Q, v = 0 on 8. Then there is no solution
of the equation Lu = 0 in C§+‘S(Q) such that v # 0, u Z v and u — 0 as
1 — Foo.

Proof: For N sufficiently large the operator L is invertible from C2+6(Q+)
C%(9;) and from C2+3(Qy) to C%(y). So we can apply the previous lemma
for it and for these domains.

Suppose that there exists a solution u(z) € C3T°(f) of the equation Lu =
0, u # 0. Without loss of generality we can assume that at least one of its
components has positive values in the domain Q° = Q/(2} UQy). Otherwise
we can change u by —u.

Denote z = 7v — u. Then for 7 sufficiently large, z > 0 in Q° and 8z/0v < 0
on 90Q° N 89Q. Denote 7y the minimal value of 7 for which z still satisfies these
properties. Clearly 75 > 0.

Thus for 7 = 79, 2(z) > 0 in Q° and (a) z(z¢) = 0 for some zo € °NQ or
(b) 8z/8v = 0 at some point on 9N° N Q. Then from the previous lemma,
z(z) > 0 in Q. In case (a) we obtain a contradiction with the positiveness
theorem, and in case (b) with the negativeness of the normal derivative on the
boundary. The theorem is proved. |

Remark: For the conditions of the lemma it can be shown similarly that the
operator L cannot have positive eigenvalues in C27° ().
LEMMA 3.5: Let the operator Lt as acting from C2+6(Qg') to C3(Qf) have the

essential spectrum in the left half-plane. Then it does not have zero eigenvalue.

Proof: We apply Remark 3 to Lemma 3.3. For this we construct a positive
solution v, of the inequality L*v < 0 which is an upper function and provides
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existence of a positive solution v(z) of the equation LTv = 0. We put

V(@) = e 14 (z)

for some small positive k. The function ¢, should be positive in Q' and satisfy
the inequality
(VA m"+’8¢+ st V2 bt ()
it (z)A b+ bf(z )a—xj +@"(z)s" - by (2 )s+¢ (z )4 <0.
j=2
If « is sufficiently small, we can take as ¢+ the principal eigenfunctions of the
operator corresponding to the left hand side of this inequality.

Suppose that there is a solution u(x) € C2*°(Qf) of the equation Lu = 0.
Then u(z) — 0 as 1 — +00. Otherwise, A = 0 would be a point of the essential
spectrum of this operator [19]. Since v(z) > 0 in QF and on I's, we can apply
Remark 3 to the functions 7v and u for any positive 7. If 7 — 0, we obtain in
the limit « <0 in QS’ . Changing u to —u we show that « > 0. Thus v = 0. The
lemma. is proved. 1

Similarly, we show the invertibility of the operator L~ in C279(Qy).
The last theorem states the asymptotic stability without shift when the
derivative of the wave does not belong to the weighted space.

THEOREM 3.4: Suppose that the problem P~ has all eigenvalues in the left half-
plane for all real € and there exists v such that the problem P* has all eigenvalues
in the left half-plane also for all real €.

If the derivative of the wave dw(x)/0z; does not belong to the space H, then
the wave is asymptotically stable in this space.

Proof: We should verify that all eigenvalues of the operator L in the space H
lie in the left half-plane. Consider the operator L = T-1LT in the space HY,
where T is the operator of multiplication by p. It is sufficient to verify that all
its eigenvalues lie in the left half-plane.

The essential spectrum of this operator is determined by the problems (3.6),
(3.7) and (3.8), (3.9) and lies in the left half-plane. Suppose that it has an
eigenvalue with nonnegative real part. Then its principal eigenvalue, being real,
is nonnegative and tends uniformly to zero as z; — *oo. We can apply Lemma
3.4 since the operators

~ + Ui ’ au 1 ’ 8u
o — ot + + _9q+
LTu=a (:z;)Au+E=2bj(z)axj+(b1(x)+c 2a (:z)u)awl

+at(z W? - (bf(x; Y+ +ct@



Vol. 110, 1999 MULTIDIMENSIONAL TRAVELLING WAVES 291

and

s m_rau F ouw  _
I7u=a (z)Au+jz:;bj (x)aTj-{-(bl(z)ﬂLc)a—m-}-c (2 )u

0
to C%(Q%) and from C2™(Qy) to C(Qy), respectively (Lemma 3.5).

Thus we have shown that the equation Lu = Au with nonnegative A cannot
have nonzero solutions converging to zero at infinity and different from the func-
tion v = —0w/0z, p. Hence the corresponding eigenfunctions cannot belong to
the space H. Otherwise it would converge to zero at infinity and, consequently,
coincide with v. This contradicts the assumption that the derivative of the wave

are invertible (i.e. they do not have zero eigenvalue) as acting from Cat?(Q3;)

does not belong to the weighted space. The theorem is proved. |
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